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We introduce a generalized two-dimensional orbital compass model, which interpolates continuously from
the classical Ising model to the orbital compass model with frustrated quantum interactions, and investigate it
using the multiscale entanglement renormalization ansatz �MERA�. The results demonstrate that increasing
frustration of exchange interactions triggers a second-order quantum phase transition to a degenerate symmetry
broken state which minimizes one of the interactions in the orbital compass model. Using boson expansion
within the spin-wave theory we unravel the physical mechanism of the symmetry-breaking transition as
promoted by weak quantum fluctuations and explain why this transition occurs only surprisingly close to the
maximally frustrated interactions of the orbital compass model. The spin waves remain gapful at the critical
point, and both the boson expansion and MERA do not find any algebraically decaying spin-spin correlations
in the critical ground state.
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I. INTRODUCTION

The orbital compass model �OCM� is physically moti-
vated by the orbital interactions which arise for strongly cor-
related electrons in transition-metal oxides with partly filled
degenerate 3d orbitals and lead to rich and still poorly un-
derstood quantum models. In these systems the orbital de-
grees of freedom play a crucial role in determining collective
states such as coexisting magnetic and orbital order, as for
instance in the colossal magnetoresistance manganites1 or in
the vanadate perovskites.2 The orbital interactions are typi-
cally intrinsically frustrated and may strongly enhance quan-
tum fluctuations, leading to disordered states.3 While realistic
orbital interactions are somewhat complex, a paradigm of
intrinsic frustration is best realized in the OCM,4–8 with the
pseudospin couplings intertwined with the orientation of in-
teracting bonds. Its two-dimensional �2D� version on a hon-
eycomb lattice,9 realized in layered iron oxides,10 is equiva-
lent to the Kitaev model.11

Although conceptually quite simple, the OCM has an in-
terdisciplinary character as it plays an important role in a
variety of contexts beyond the correlated transition-metal ox-
ides, such as: �i� the implementation of protected qubits for
quantum computations in Josephson lattice arrays,8 �ii� topo-
logical quantum order,12 or �iii� polar molecules in optical
lattices and systems of trapped ions.13 Numerical studies7

suggested that when anisotropic interactions are varied
through the isotropic point of the 2D OCM, the ground state
is not an orbital liquid type but instead a first-order quantum
phase transition �QPT� occurs between two different types of
Ising-type order dictated by one or the other interaction. Re-
cently the existence of this transition, similar to the one
which occurs in the exact solution of the one-dimensional
OCM,14 was confirmed using projected entangled-pair state
algorithm.15 This implies that the symmetry is spontaneously
broken at the compass point, and the spin order follows one
of the two equivalent frustrated interactions.

Knowing that the ground states of the 2D Ising model and
the 2D OCM are quite different, we introduce a generalized

OCM which interpolates between these two limiting cases.
Using this model we will investigate: �i� the physical conse-
quences of gradually increasing frustration in a 2D system,
�ii� where a QPT occurs from the Ising ground state to the
degenerate ground state of the OCM, and, finally, �iii� the
order and the physical mechanism of this QPT. As increasing
frustration of the orbital interactions introduces entangled
states, the present problem provides a unique opportunity to
use the recently developed multiscale entanglement renor-
malization ansatz16,17 �MERA� in order to find reliable an-
swers to the above questions. As we show below, the QPT in
the generalized OCM occurs only surprisingly close to the
maximally frustrated interactions in the OCM. We also ex-
plain the physical origin of this behavior using an analytic
approach based on the spin-wave theory.

Quantum many-body systems exhibit several interesting
collective phenomena. Recent progress in developing effi-
cient numerical methods to study quantum systems on a lat-
tice is remarkable and allowed to investigate complex many-
body phenomena, including QPTs.18 An important step here
was the discovery of density-matrix renormalization group,19

a very powerful numerical method that can be applied to
one-dimensional strongly correlated fermionic and bosonic
systems.20 This idea played a fundamental role in developing
entanglement renormalization16,17 to study quantum spin
systems on a 2D lattice. Crucial in this approach is the
removal of short-range entanglement by unitary trans-
formations called disentanglers. It generates a real-space
renormalization-group transformation implemented in the
MERA, which was recently successfully employed to inves-
tigate several quantum spin models,21–25 and interacting fer-
mion systems.26,27 So far, the very promising MERA has
been applied inter alia to the 2D quantum Ising model,21,22

and to the Heisenberg model on a kagome lattice,28 but other
possible applications and the optimal geometries for per-
forming sequentially disentanglement and isometry transfor-
mation were also discussed.23

The paper is organized as follows. In Sec. II we introduce
the generalized OCM and state the problem of the existence
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and nature of the QPT. Next we present the MERA algorithm
in Sec. III used to investigate frustrated interactions in the
OCM. Numerical results obtained using the MERA are pre-
sented in Sec. IV. In order to explain the physical mechanism
of the QPT found in the OCM we performed the boson ex-
pansion within the spin-wave theory, as described in Sec. V.
The details of this expansion are presented in the Appendix.
The paper is summarized in Sec. VI, where the main conclu-
sions of the present work are also given.

II. GENERALIZED COMPASS MODEL

In this paper, we investigate the nature and position of the
QPT when the OCM point is approached in a different way
from that studied before,7,15 namely, when frustration of in-
teractions along two nonequivalent directions gradually in-
creases. Therefore, we introduce a 2D generalized OCM
with ferrolike interactions29 on a square lattice in ab plane
�we assume the exchange constant J=1�,

H��� = − �
ij�ab

��ij
a ����i+1,j

a ��� + �ij
b ����i,j+1

b ���� . �1�

The interactions occur between nearest neighbors and are
balanced along both lattice directions a and b. Here �ij� la-
bels lattice sites, with i �j� increasing along a �b� axis, and
��ij

a ��� ,�ij
b ���� are linear combinations of Pauli matrices de-

scribing interactions for S=1 /2 spins,

�ij
a ��� = cos��/2��ij

x + sin��/2��ij
z , �2�

�ij
b ��� = cos��/2��ij

x − sin��/2��ij
z . �3�

The interactions in Eq. �1� include the classical Ising model
at �=0° for �ij

x operators and become gradually more frus-
trated with increasing angle �� �0° ,90°�—they interpolate
between the Ising model �at �=0°� and the isotropic OCM
�at �=90°�, see Fig. 1. The latter case is equivalent to the 2D
OCM with standard interactions �ij

z �i,j+1
z and �ij

x �i+1,j
x along

the a and b directions4–8 by a straightforward unitary trans-
formation. The model �Eq. �1�� includes also as a special

case the 2D orbital model for eg electrons at �=60°,29 de-
scribing, for instance, the orbital part of the superexchange
interactions in the ferromagnetic planes of LaMnO3.30

Since the isotropic model has the same interaction
strength for the bonds along both a and b axes, it is symmet-
ric under transformation a↔b, and the issue of the QPT
between different ground states of the anisotropic compass
model15 does not arise. On one hand, this symmetry is
obeyed by the classical Ising ground state while on the other
hand, in the ground state of the OCM this symmetry is spon-
taneously broken �and the ground state is degenerate�. There-
fore, an intriguing question concerning the ground state of
the model �Eq. �1�� is whether it has the same high symmetry
as the Ising model in a broad range of �, or the symmetry is
soon spontaneously broken when � increases, i.e., there are
degenerate ground states with lower symmetries, also for the
eg orbital model, see Fig. 1�b�. This question has been ad-
dressed by investigating the energy contributions along two
equivalent lattice directions a and b by applying the MERA.

III. MERA ALGORITHM

A. Calculation method

In order to obtain the ground state, we use a translation-
ally invariant MERA on infinite lattice.23 The MERA is a
tensor network with infinite number of layers of disentan-
glers and isometries. By translational invariance, all isome-
tries �disentanglers� in a given layer are the same. Since ev-
ery layer represents a coarse-graining renormalization-group
transformation, shown in Fig. 2 for the 9-to-1 geometry and
described in more detail in Ref. 23 �see their Fig. 7�, we
assume that after a finite number of such transformations a
fixed point of the renormalization group is reached �either
trivial or nontrivial� and from that time on the following
transformations are the same. In other words, at the bottom
of the tensor network there is a finite number of nonuniversal
layers whose tensors are different in general but above cer-
tain level all layers are the same. The bottom layers describe
nonuniversal short-range correlations and the universal lay-
ers above this level describe universal properties of the fixed
point. The number N of the nonuniversal bottom layers is
one of the parameters of the infinite-lattice MERA. We have
verified that it is enough to keep up to three nonuniversal
layers, depending on how close the critical point is.

Starting with randomly chosen tensors, the structure is
optimized layer by layer, from the top to bottom and back. In
given layer �, we calculate an environment of each tensor
type by means of renormalized Hamiltonians h� and density
matrices �� computed from other layers. The environments
are aimed at updating tensors to minimize total energy. In the
universal layer, this updating technique is slightly different:
h� and �� are fixed points of the renormalization procedure
defined by tensors in this layer. The above steps are iterated
until the convergence of energy is achieved. For given �, we
obtain the ground state for different values of bond dimen-
sion �. It turns out that in most cases it is sufficient to work
with �=3, which is the same in each layer. However, it is
necessary to increase � to 4 in the neighborhood of the criti-
cal point. The number of operations and the required

(a) (b) (c)θ = 0◦ θ = 60◦ θ = 90◦

σz σz σz

σx σx σx

σa, σb
σa

σb

σa

σb

θ QPT

FIG. 1. �Color online� Artist’s view of the evolution of orbital
interactions in the generalized OCM �Eq. �1�� with increasing angle
�. Heavy �blue� lines indicate favored spin direction induced by
interactions along two nonequivalent lattice axes a and b. Different
panels show: �a� the Ising model at �=0°, �b� the 2D eg orbital
model at �=60°, and �c� the OCM at �=90°. Spin order follows the
interactions in the Ising limit while it follows one of the equivalent
interactions, �a or �b, in the OCM. This results in the symmetry-
breaking QPT which occurs between �b� and �c�, as we show in
Secs. IV and V.
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memory scale as �16 and �12, respectively. The inset in Fig.
4�a� shows the convergence of the energy of the ground state
with an increasing bond dimension. Here we also present a
comparison of results obtained with the alternative 5-to-1
geometry.

The algorithm is implemented in c�� and optimized in
order to work on multiprocessor computers. On an eight-core
2.3 GHz processor, it takes about half an hour to update the
whole tensor network which consists of four layers of tensors
with �=4. Near the critical point, i.e., at ���c, the conver-
gence requires several thousands of iterations whereas it is
significantly faster far from �c. When � is scanned from 0° to
90° �or back�, it is more efficient to use the previous ground
state as an initial state for the next discrete value of � instead
of starting from a random initial state for each value of �. We
have carefully verified convergence to the ground state by
scanning � back and forth and comparing the results with
those obtained from random initial states for selected values
of �.

B. Correlations

In order to calculate correlations, we take advantage of
the special structure of the renormalization-group transfor-
mation in Fig. 2. A site of the lattice that lies in the center of
a 3�3 decimation block �number 9 in Fig. 2� undergoes
renormalization in a particularly easy manner. Since no dis-

entangler is applied to this central site, a one-site operator
o�−1 at this site is mapped by the �th renormalization-group
transformation to a coarse-grained one-site operator

o� = R�o�−1. �4�

Here R� is a renormalizer superoperator built out of con-
tracted isometries only, as shown in Fig. 3�a�,

�R��kl
ij = �

n1,. . .,n8

�W��n1¯n8k
i �W�

†� j
n1¯n8l. �5�

The meaning of the transformations W� and W�
† is given in

Figs. 2 and 3�a�. Thus, if we have N nonuniversal layers at
the bottom of the geometry of MERA, then renormalized
one-site operators at the central sites just below the universal
layer are given by �see Fig. 3�b��

oN = RNRN−1 ¯ R1o0, �6�

where o0	o denotes a physical, microscopic one-site opera-
tor at one of the central sites at the very bottom of the MERA
tensor network.

To extract information on the correlations, it is convenient
to write eigendecomposition of the renormalizer R� in the
universal layer,

R�v	 = 
	v	. �7�

It is straightforward to verify the basic property of the spec-
trum of R�: 

	
�1. The ortonormality of the vectors Wi in
Eq. �5� implies that the identity operator �v1�ij =�ij is an ei-
genvector with eigenvalue 
1=1. In our numerical calcula-
tions this is the only eigenvalue with modulus 1.

After the operator oN is decomposed as oN=�	oN
	v	, a

repeated action of the renormalizer R� in the universal layers
can be written as

R�
n oN = �

	


	
noN

	v	. �8�

A correlator between two central sites x and y separated by a
distance 
x−y
=3n+N in the horizontal �vertical� direction is
thus given by

FIG. 2. �Color online� 9-to-1 geometry of MERA applied to the
OCM: dark �red� boxes represent the action of disentanglers
U ,Uh ,Uv and gray �green� ones—isometries W; arrows indicate
subsequent transformations used; the labels of spins 1–9 in a single
block are addressed in the text. This is a coarse-graining
renormalization-group transformation where each 3�3 plaquette in
the top-left panel is replaced by a coarse-grained spin in the bottom-
right panel �nine spins are replaced by one coarse-grained spin�. To
minimize the number of states � of the coarse-grained spin, the
microscopic spins are disentangled prior to decimation. We also
used a 5-to-1 geometry, see Fig. 1 of Ref. 22.

FIG. 3. �Color online� �a� Renormalizer superoperator which
consists of isometries only. The connections show how the isome-
tries are contracted; compare Eq. �5�. �b� Method of calculating
correlations �oxoy�= �o0o0� between two sites separated by a dis-
tance 3n+N. The scheme presents a graphical explanation of Eq. �9�.
�c� Deriving ��

�2� from �� when sites are separated vertically �top�
and horizontally �bottom�.

SPONTANEOUS SYMMETRY BREAKING IN A… PHYSICAL REVIEW B 82, 104416 �2010�

104416-3



�oxoy� = Tr���
�2��R�

n oN � R�
n oN�� �9�

=�
	,

oN
	oN

c	
	
n


n �10�

=�
	,

oN
	oN

c	

r−log3�
	
� , �11�

where r=3n and

c	 = Tr���
�2��v	 � v�� . �12�

Here ��
�2� is a two-site reduced density matrix in a universal

layer derived from �� as depicted in Fig. 3�c�.
Correlations corresponding to the leading eigenvalue 
1

=1 do not decay with the distance between x and y. They
describe long-range order in the operator o and can be used
to extract its expectation value �o�,

�o�2 = lim

x−y
→�

�oxoy� = oN
1 oN

1 c11 = �oN
1 �2, �13�

where we use the property: limn→� 
	
n =0 that holds for 	

�1 and the fact that c11=1 which is a consequence of v1
being an identity. Thus only a one-site operator with a non-
zero coefficient oN

1 has nonzero expectation value. A trivial
example is the identity o= I. Indeed, we obtain oN= I in
Eq. �6�, which is equivalent to oN

1 =1, and Eq. �13� yields
�I�2=1 as expected.

IV. NUMERICAL RESULTS

A. Symmetry-breaking transition

Information about the ground state of the OCM �Eq. �1��
is contained in average energy per bond E��� and energy
anisotropy �E���,

E��� = −
1

2
��ij

a ����i+1,j
a ��� + �ij

b ����i,j+1
b ���� , �14�

�E��� = 
��ij
a ����i+1,j

a ���� − ��ij
b ����i,j+1

b ����
 . �15�

In the classical limit of Ising interactions E�0°�=−1 and
�E�0°�=0. Due to increasing frustration, the energy E���
gradually increases for increasing angle � in Eq. �1� and
reaches a maximum of E�90°��−0.57 in the OCM, see
Fig. 4�a�. This increase is smooth and does not indicate the
existence of a QPT.

However, by investigating the anisotropy �E��� �Eq.
�15�� between a and b bonds, we identified an angle �c at
which �E��� starts to grow. Although a gradual evolution of
the ground state staring from �=0° might be also expected,
the Ising-type state is first surprisingly robust in a broad
range of angles �� �0° ,�c�, and the energy associated with
bonds along the a and b axes remains the same, i.e., �E���
	0. Next, the symmetry between the a and b directions is
spontaneously broken above �c, where a finite value of
�E��� is found, and then �E��� grows rapidly with further
increasing angle �, i.e., large spin correlations develop along

only one of the two equivalent directions a and b. This QPT
was detected by the MERA at �c�84.8°, see Fig. 4�b�.

B. Magnetization in the ground state

To understand better the QPT at �c let us consider the
expectation value of the spontaneous magnetization M
	�Mx ,My ,Mz� derived from the long-range order in the cor-
relation function,

lim

x−y
→�

��x
k�y

l � = MkMl, �16�

where k�l�=x ,y ,z. For the interactions in Eq. �1� one finds
My 	0 for any �.

We found that the ground state obtained using the MERA
for ���c is characterized by Mz=0 and Ising-type long-
range order of Mx which gradually decreases but remains
rather large, 
Mx
�0.93, in this parameter range. The sym-
metry between the directions a and b is broken above �c by
appearance of a nonzero component Mz.

The value of the total magnetization

M = 
M
 	 �Mx�2 + �Mz�2, �17�

obtained from the MERA decreases continuously from
M�0°�=1 in the Ising model to M�90°��0.92 in the OCM,
see Fig. 4�c�. Thus the reduction in the order parameter M by
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FIG. 4. �Color online� Ground state obtained for the generalized
OCM �Eq. �1�� using the MERA: �a� average energy E per bond
given by Eq. �14�, �b� energy anisotropy �E given by Eq. �15�, �c�
spontaneous magnetization M given by Eq. �17�, and �d� magneti-
zation orientation � given by Eq. �18�. Embedded L�L clusters
coupled to the neighboring spins by MF terms �L�L� exhibit quali-
tatively similar behavior. Inset: convergence of the ground-state en-
ergy obtained by two geometries of MERA with increasing bond
dimension �. Black: 9-to-1 geometry presented in Fig. 2; blue:
5-to-1 geometry introduced in Fig. 1 of Ref. 22. The 9-to-1 geom-
etry results prove to converge faster for � close to �c �Ref. 32�.
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quantum fluctuations arising from the admixture of the zth
component, is here rather small, and reproduces qualitative
results obtained for the eg orbital model within the linear
orbital wave theory.31 Furthermore, by a closer inspection of
M��� we have found that the derivative ��M��� /��� does not
exist at �=�c.

As expected from the behavior of �E, the obtained sym-
metry breaking shown in Fig. 4 implies that the direction of
spontaneous magnetization M, parametrized by an orienta-
tion angle

� = arctan�Mz

Mx� , �18�

begins to change when � increases above �c, see Fig. 4�d�.
For ���c, the magnetization has only one component Mx

�0 with �=0, pointing either parallel or antiparallel to �x

which is half way between �a��� and �b���, see Fig. 1. Be-
low �c the ferromagnetic ground state is doubly degenerate
and the magnetization is �M = � 
Mx
. When � increases
above �c the magnetization begins to rotate in the �Mx ,Mz�
plane by the nonzero angle �� �Eq. �18�� with respect to the
�
Mx
 initial magnetization below �c, and each of these two
states splits off into two ferromagnetic states rotated by �
�

with respect to the �x axis. As a result, one finds four degen-
erate states above �c, and each of them is tilted with respect
to ��x, either toward ��a��� or toward ��b���, depending
on the sign of the rotation angle �. In the OCM limit �
=90° is approached, the magnetization angle approaches �
=� /4. In this limit there are four degenerate Ising-type fer-
romagnetic states, with magnetization either along ��a�90°�
�and ��b�90°��=0� or ��b�90°� �and ��a�90°��=0�.

Qualitatively the same results were obtained from the em-
bedded L�L clusters and they are also shown in Fig. 4 for
comparison. While 2�2 cluster is too small and the quan-
tum fluctuations are severely underestimated, the two larger
3�3 and 4�4 clusters are qualitatively similar and estimate
the QPT point from above, see Fig. 4. Rather slow conver-
gence of these results toward the MERA result for �E and
for 
�
 demonstrates the importance of longer range correla-
tions for the correct description of the QPT at �=�c.

Altogether, these results show that the degenerate ground
state of the generalized OCM consists of a manifold of states
with broken symmetry. This confirms that the OCM is in the
Ising universality class,6,7 with no quantum coupling be-
tween different broken symmetry Ising-type states. However,
we found the large value of �c�84.8° rather surprising and
we investigated it further using spin-wave theory. These cal-
culations are presented in the next section.

Another surprise is the absence of any algebraically de-
caying spin-spin correlations in the MERA ground state at
�c. They could arise from the subleading eigenvalues

2 ,
3 , . . . which we found to be nonzero. However, their
corresponding coefficients c	 with 	�1 or �1 in Eq.
�11� are small �at most �10−4� and they decay with increas-
ing dimension � and especially the number of nonuniversal
layers N. As a result, the only nonvanishing term in Eq. �11�
is the leading one for 	==1, describing the nondecaying
long-range order. Notice that this observation does not ex-
clude nontrivial short-range correlations up to a distance 3N

described by the N nonuniversal layers. We believe that
when N is too small, then the missing short-range correla-
tions find a way to show up in the small but nonzero univer-
sal coefficients c	 but these coefficients decay quickly with
increasing N as the short-range correlations become accu-
rately described by the increasing number of nonuniversal
layers.

V. SPIN-WAVE EXPANSION

Since the spin-wave expansion in powers of 1 /S becomes
exact when the spin S→�, we introduced a large-S exten-
sion of the generalized OCM Hamiltonian �1� with rescaled
spin operators: �x→Sx /S and �z→Sz /S. We consider first
the classical energy per site,

E0��,�� 	 �H����� = −
1

2
�1 + cos � cos�2��� , �19�

obtained using the mean field �MF� for the ordered state of
classical spins S� , with the magnetization direction given by
Eq. �18�. The classical energy has a minimum at �=0 for the
entire range of �� �0° ,90°�. However, when the angle �
approaches 90°, the minimum becomes more and more shal-
low, and finally disappears completely at �=90°. Thus, the
classical ground state becomes very sensitive to quantum
fluctuations in the vicinity of the maximally frustrated inter-
actions in the OCM.

This behavior of the classical ground-state energy ex-
plains why small energy contributions due to quantum fluc-
tuations may play so crucial role in the generalized OCM
only in the regime of � close to 90°, where they trigger a
QPT by splitting the shallow symmetric classical energy
minimum at �=0 into two symmetry-broken minima at finite
values ��min—we show an example of this behavior in
Fig. 5 for a particular value of ���c. Since the quantum
fluctuations induce here symmetry breaking instead of mak-
ing the ground state more symmetric, this mechanism goes
beyond the Landau functional paradigm.

We analyzed the effects of quantum fluctuations and the
arising symmetry breaking using the Holstein-Primakoff rep-

0 π/4-π/4 φ
min

-φ
min

φ

0

0.002

0.004

E

E
0
(θ,φ)

E
6
(θ,φ)

FIG. 5. �Color online� Mechanism of the QPT in the generalized
OCM �Eq. �1�� for S=1 /2 and �=87° ��c. The minimum of the
classical energy E0�87° ,�� �Eq. �19�� �dashed line� at �=0 is shal-
low and thus unstable against weak quantum fluctuations which
induce two symmetric minima at a finite value of ��min obtained
from E6�87° ,�� derived from Eq. �22�. For better comparison, E0

and E6 are shifted to have a minimum value of 0.
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resentation of spin �Sij
	� operators via �bij� bosons,

cos �Sij
x + sin �Sij

z = S − bij
† bij , �20�

− sin �Sij
x + cos �Sij

z =
bij

†

2
2S − bij

† bij + H.c. �21�

Operators �bij ,bij
† � satisfy standard bosonic commutation re-

lations: �bij ,bi�j��=0 and �bij ,bi�j�
† �=�ii�� j j�. In this approach,

we are looking for a critical value �c, above which it is
energetically favorable to change the direction of magnetiza-
tion M from the symmetric state �=0 to a symmetry-broken
state with a finite value of ��0. We expanded the square
root in Eq. �21� in powers of 1 / �2S� and obtained an expan-
sion of Hamiltonian �1� in powers of the operators �bij ,bij

† �.
As we applied Wick’s theorem to reduce the obtained Hamil-
tonian to an effective quadratic Hamiltonian, the terms pro-
portional to the odd powers of 1 / �2S� do not contribute and
are skipped below �for more details see the Appendix�. When
truncated at the sixth-order term this expansion reads

H̃6 � H0 + �2S�−1H2 + �2S�−2H4 + �2S�−3H6. �22�

Here H2n is a sum of all terms of the 2nth order in �bij ,bij
† �

operators. In a similar way, H̃4 and H̃2 denote expansions
truncated at the fourth- and second-order terms, respectively.
We have found a posteriori that the second-order expansion

H̃2 �noninteracting spin waves� does not suffice and higher
order terms are necessary. Consequently, we consider below
Hamiltonian �1� expanded up to the sixth order.

For given � and �, we can approximate the ground state
of the boson Hamiltonian given by Eq. �22� by a Bogoliubov
vacuum obtained as the ground state of the quadratic Hamil-

tonian H̃2
MF obtained using the MF averaging of four- and

six-boson terms. Details of this calculation can be found in
the Appendix.

First we performed separate calculations for H̃2, H̃4, and

H̃6 for several values of spin S�1 when the 1 / �2S� expan-

sion given in Eq. �22� is convergent. The quadratic H̃2 fails
for large �, where its spectrum becomes gapless and the

magnetization M �Eq. �17�� diverges. In contrast, H̃4 and H̃6
give only small reduction in M in the entire range of �, see
Figs. 6�a� and 6�c�. Interestingly, the Bogoliubov spectrum
remains gapful at �c in both the fourth- and sixth-order ex-
pansions and, just like in the MERA, there are no algebra-
ically decaying spin-spin correlations. The critical angle �c at
which the symmetry-breaking QPT occurs increases toward
90° with increasing S when the quantum fluctuations become
less significant. Therefore, the magnetization M increases
with increasing S and it tends to 1 in the classical limit
S→�.

Encouraged by these results, we also performed similar
calculations for the generalized OCM �Eq. �1�� with S=1 /2,
where the convergence of the 1 / �2S� expansion becomes
problematic. Unlike for S�1, we find that the fourth-order
expansion is insufficient as it predicts the first-order QPT
�Fig. 6�d�� and does not agree qualitatively with the predic-
tion of the MERA, see Sec. IV. Only in the sixth order one

finds a qualitative agreement between the present boson ex-
pansion and the MERA, both giving the second-order QPT at
�c. A cusp in M��� seen in Fig. 6�c� shows that even the
sixth-order expansion is not quite converged for S=1 /2.
Again, the Bogoliubov spectrum remains gapful at �c in the
sixth-order expansion, with a finite gap equal 1.52, and one
finds no algebraically decaying spin-spin correlations.

VI. CONCLUSIONS

Summarizing, we found that a second-order quantum
phase transition in the generalized orbital compass model
�Eq. �1�� occurs at �c=84.8° which is surprisingly close to
the compass point �=90°, i.e., only when the interactions are
sufficiently strongly frustrated. There is spontaneous ferro-
magnetic magnetization at any angle �� �0° ,90°�. Below �c
the ferromagnetic ground state is doubly degenerate with the
spontaneous magnetization, either parallel or antiparallel to
the average direction �ij

a +�ij
b . None of the directions, neither

a nor b, is preferred in this symmetric phase. In contrast,
when � increases above �c the symmetry between a and b
becomes spontaneously broken and the ferromagnetic mag-
netization begins to align parallel/antiparallel to either �ij

a or
�ij

b . The ground state is fourfold degenerate in this
symmetry-broken phase. The spontaneous magnetization M
is close to 1 and quantum fluctuations remain small in the
whole range of �� �0° ,90°�.

These results were obtained using the MERA and the
mechanism of the QPT was explained within the spin-wave
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FIG. 6. �Color online� Symmetry breaking in the ground state as
obtained from the boson expansion �Eq. �22��. Panels �a� and �b�
show results for S=1, and �c� and �d�—for S=1 /2; �a� and �c�
depict magnetization M �Eq. �17��, and �b� and �d�—the value of
the magnetization angle � �Eq. �18�� that minimizes energy. Calcu-

lations for H̃6 predict the following values of �c: 85.89°, 86.9°,
88.2°, and 89.2° for S=1 /2, S=1, S=2, and S=5, respectively �the
last two not shown�, and �c→90° for S→�.
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theory. For classical spins the minimum of energy is at one
of the two symmetric states with the magnetization either
parallel or antiparallel to �ij

a +�ij
b , see Fig. 5. The minimum

becomes more and more shallow as the compass point �
=90° is approached. However, the quantum fluctuations are
weak due to the gapful orbital wave excitations, and only
very close to the above OCM point become strong enough to
split the shallow minimum into two distinct minima in the
vicinity of the OCM point. In this way the symmetry be-
tween the axes a and b is spontaneously broken. For this
reason the orbital eg model with ferro-orbital interactions,
considered in Ref. 31 and corresponding to a “moderate”
value of �=60° �see Fig. 1�b��, orders in a symmetric �uni-
form� phase induced by the stronger �here ��ij

x �i�j�
x � interac-

tion component.
Interestingly, since—unlike in the Landau paradigm—the

symmetry in the present model �Eq. �1�� is broken rather than
restored by quantum fluctuations, we do not find any alge-
braically decaying spin-spin correlations at the critical point
found in the generalized orbital compass model �Eq. �1��.
The spin waves also remain gapful at this point.
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APPENDIX: DETAILS OF THE SPIN-WAVE
CALCULATION

In this section we present the details of the spin-wave
calculation. We consider the general case of an L�L square
lattice, with L being odd for convenience. The results pre-
sented in Sec.V are obtained after taking the thermodynamic
limit L→�.

For given � and �, the ground state of the boson Hamil-
tonian �22� is approximated by a Bogoliubov vacuum ob-
tained as the ground state of a MF quadratic Hamiltonian

H̃2
MF �to be derived later on�. Terms H2, H4, and H6 in

Eq. �22� are given by

H2 = 4�1 + cos � cos�2����
r

br
†br − sin2�� −

�

2
��

r
�br

†br+ex

+ brbr+ex
+ H.c.� − sin2�� +

�

2
��

r
�br

†br+ey
+ brbr+ey

+ H.c.� , �A1�

H4 = − 4 cos2�� −
�

2
��

r
br

†br+ex

† brbr+ex

− 4 cos2�� +
�

2
��

r
br

†br+ey

† brbr+ey

+
1

2
sin2�� −

�

2
��

r
�br

†br
2�br�ex

+ br�ex

† � + H.c.�

+
1

2
sin2�� +

�

2
��

r
�br

†br
2�br�ey

+ br�ey

† � + H.c.� ,

�A2�

H6 =
1

8
sin2�� −

�

2
��

r
��br

†br�2br�br�ex
+ br�ex

† �

− 2br
†br+ex

† br
2�br+ex

+ br+ex

† �br+ex
+ H.c.�

+
1

8
sin2�� +

�

2
��

r
��br

†br�2br�br�ey
+ br�ey

† �

− 2br
†br+ey

† br
2�br+ey

+ br+ey

† �br+ey
+ H.c.� , �A3�

where r= �i , j�, ex= �1,0�, and ey= �0,1�. The � signs mean
here that both terms, with + and − sign separately, must be
taken into account.

To derive the quadratic approximation H̃2
MF, we replace

the boson terms in H4 and H6 with two-boson terms and
proper averages by means of the MF approximation and
Wick’s theorem. This justifies a posteriori why the expan-
sion �Eq. �22�� is limited only to the terms with even number
of boson operators. As an example of this approximation,
consider one of the contributions to H4 in Eq. �A2�:
br

†br
2br+ex

, which is replaced with a quadratic term,

br
†br

2br+ex
� 2�br

†br�brbr+ex
+ 2�brbr+ex

�br
†br + �br

†br+ex
�br

2

+ �br
2�br

†br+ex
− �br

†br
2br+ex

� . �A4�

The above replacement procedure leads to six MF param-
eters �mi�	�m1 ,m2 , . . . ,m6� that should satisfy self-
consistency conditions. These are in fact all possible combi-
nations of operators defined on nearest-neighbor sites that
cannot be derived one from another by commutation
relations and translational invariance of the lattice, i.e.,
m1= �br

†br�, m2= �br
†br+ex

�, m3= �br
†br+ey

�, m4= �br
2�, m5

= �brbr+ex
�, and m6= �brbr+ey

�.
The obtained Hamiltonian H̃2

MF is diagonalized by the
Fourier transformation followed by the Bogoliubov transfor-
mation. Fourier transformation which is consistent with pe-
riodic boundary conditions bL+1,j =b1,j and bi,L+1=bi,1 has the
following form:

br =
1

L
�
k

bkeik·r, �A5�

where k= �kx ,ky� is the momentum. In the sum, momentum
components kx and ky take the values �for odd L considered
here�,

kx�y� = 0 ·
2�

L
, � 1 ·

2�

L
, . . . , �

L − 1

2
·

2�

L
. �A6�

Diagonalization of H̃2
MF is completed by the Bogoliubov

transformation,

bk = uk�k + v−k
� �−k

† , �A7�

where the modes uk and vk are normalized such that
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uk
2− 
vk
2=1. The obtained modes are used to calculate new
values of the MF parameters �mi� �i=1,2 , . . . ,6�. For in-

stance, one of them reads: m2= �br
†br+ex

�= 1
L2 �k
vk
2cos kx.

Starting from random values, the above steps are iteratively
applied until full convergence of all �mi� is reached, which
results in satisfying the self-consistency conditions.
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